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Abstract. Neural networks are supposed to recognise blurred images (or patterns) of N pixels (bits) each.
Application of the network to an initial blurred version of one of P pre-assigned patterns should converge
to the correct pattern. In the “standard” Hopfield model, the N “neurons” are connected to each other
via N2 bonds which contain the information on the stored patterns. Thus computer time and memory in
general grow with N2. The Hebb rule assigns synaptic coupling strengths proportional to the overlap of the
stored patterns at the two coupled neurons. Here we simulate the Hopfield model on the Barabási-Albert
scale-free network, in which each newly added neuron is connected to only m other neurons, and at the end
the number of neurons with q neighbours decays as 1/q3. Although the quality of retrieval decreases for
small m, we find good associative memory for 1 � m � N . Hence, these networks gain a factor N/m � 1
in the computer memory and time.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 87.18.Sn Neural networks

Traditional neural network models have nodes i (“neu-
rons”) coupled to all other nodes k with some coupling
constant Jik (“synaptic strength”), similar to Sherrington-
Kirkpatrick infinite-range spin glasses [1]. Here we con-
sider one of the simplest neural network models, due to
Hopfield [2]. This model was mostly applied to infinite
range and was only rarely put onto a square lattice with
short-range interactions [3,4]. Real neural networks seem
to have neither infinite nor only nearest-neighbour connec-
tions. The spatial structures of neural networks were inves-
tigated [5] and compared with small-world and scale-free
networks [6–11]. Now we present computer simulations of
the Hopfield model [2] with Hebb couplings between neigh-
bours restricted to a Barabási-Albert (BA) scale-free net-
work [6].

In the Hopfield model, each of N neurons or sites can
be firing (Si = +1) or not firing (Si = −1). Neurons are
coupled through Jik, and are sequentially updated accord-
ing to

Si → sign

(∑
k

JikSk

)
. (1)
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(We mostly ignore the diagonal terms i = k in our sums.)
This rule corresponds to a low-temperature Monte Carlo
simulation of a spin glass. The model has stored P differ-
ent patterns ξµ

i (µ = 1, 2 . . . , P ), which we take as random
strings of ±1. The couplings are given by the Hebb rule:

Jik =
∑

µ

ξµ
i ξµ

k . (2)

The first of these patterns is presented to the network in a
corrupted form Si, with ten percent of the Si reversed in
comparison to the correct ξ1

i . The question is whether the
iteration through equation (1) transforms the erroneous Si

into the correct ξ1
i . The quality of this pattern recognition

is given by the overlap

Ψ =
∑

i

Siξ
1
i /N, (3)

which is related to the Hamming distance and equals 1
for complete recognition and ∼±1/

√
N for only accidental

agreement at random sites; it is ∼0.8 at the beginning of
the pattern recognition process, due to the ten percent
reversal.

Now we restrict the synaptic connections Jik to neu-
rons which are neighbours in the BA network, but we still



396 The European Physical Journal B

0

0.2

0.4

0.6

0.8

1.0

1 10 100 1000 10000

ov
er

la
p

patterns

Final overlap (recovered bits), for Hopfield-Barabasi-Albert, N = 10,000, one sample, m=2,3,5
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Nearest-neighbour Hopfield for 30001^1 (+), 131^2 (x), 31^3 (*), 13^4 (open sq.) and 7^5 (full sq.) neurons
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Fig. 1. Final overlap Ψ as a function of the number P of patterns, for N ∼ 104 neurons. Each point is based on one sample
only. Part (a): BA network with m = 2, 3 and 5 from bottom to top. Part (b): Nearest-neighbour hypercubic lattice in one to
five dimensions as shown in headline.

use equations (1–3). In these networks, we start from a
small core of m sites, all connected with each other. Then
N � m nodes are added, one after the other. Each new
site i selects exactly m sites from the already existing net-
work sites as its neighbours k, with a probability pro-
portional to the number of neighbours which the existing
site k has already: The rich get richer. When the network
has added N sites with a total of N +m sites, its growth is
stopped and the neural process of equations (1–3) starts.
Synaptic connections Jik exist only between sites i and k
which are neighbours.

Since no longer every neuron is connected to all
other neurons, the memory-saving trick of Penna and
Oliveira [12] to avoid storing the Jik no longer applies.
400 Megabyte were needed for N = 10, 000 nodes and

P = 20, 000 patterns. To save computer time, the Jik

should be determined after and not before the construc-
tion of the BA network.

When only one pattern is stored, it is recognised com-
pletely after two iterations. With P > 1, however, no com-
plete recognition takes place, the overlap Ψ is usually at
the final fixed point (reached after about five iterations)
lower than at the beginning, as shown in Figure 1a. How-
ever, the model can still recognise the first pattern as
the one presented to it, since the overlap Ψ ∼ 0.19 for
P = N = 104 is still appreciably larger than the overlap
|Ψ | < 0.05 with the other (P − 1) patterns.

Rather similar results are obtained if we work on a
nearest-neighbour hypercubic lattice with N = Ld sites,
similar to the studies made in [3,4] in two dimensions.
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Fig. 2. Approximate power law variation of final overlap difference (Ψ − 0.19) with the number of patterns P , averaged
over 100 samples, with N = 104 at m = 3. The straight line has a slope −0.6.
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Fig. 3. Variation of final overlap (not normalized) with the size m of the fully connected core, surrounded by N = 104 −m BA
sites having m neighbours each, at P = 10, 100 and 1000 (from left to right). Already for P � m � N the corrupted pattern is
restored well. The lowest data points refer to P = 100, N = 3000 − m. Part a ignores the diagonal term in the sum (1), while
part b includes it.

Figure 1b shows that only for small numbers P of pat-
terns an increased d means an increased final overlap. For
d = 7, 10 and 15 the overlaps with up to 20 patterns did
not differ appreciably from d = 5. No significant size ef-
fects were seen for 4 ≤ L ≤ 20 in five and 4 ≤ L ≤ 13 in
seven dimensions.

Figure 1 is based on one sample only for each point;
using instead 100 samples at m = 3 and N = 10, 000,
we see in Figure 2 that the overlap varies roughly as
Ψ(P ) − 0.19 ∝ P−0.6, except for very small m. A simi-

lar power law P−0.6 is also found for hypercubic lattices
(not shown). It would be interesting to understand this
power law from some analytical analysis.

A much better recovery of the corrupted pattern is
obtained if we take a larger inner core of the BA net-
work, that means if m is no longer small. (The first m
network sites are all mutually connected, as in the tra-
ditional Hopfield model.) Using 100 patterns, Figure 3a
shows the overlap for N + m = 104 total sites as a func-
tion of m. Already at m = 200, N = 9800 the final overlap
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Fig. 4. Scaling plot: Ψ vs. m/P , based on better statistics than Figure 3a (ten instead of one sample); note deviation for
only 1000 neurons at 100 patterns (circles).
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Fig. 5. Number of sites having q neighbours for N = 104, summed over 100,000 simulations, at m = 100 (right data). We no
longer get the simple power law const/q3, shown here for comparison at m = 2 (left data).

is 88 percent; at m = 2000, N = 8000 we have complete
recovery. For 1 � m � N the number of connections
(counting each bond twice) is mN in our case and N2 in
the fully connected case; thus we saved connections by a
factor m/N . If we include [13] the diagonal terms Jii = P
in equation (1), we prevent the overlap from becoming
worse than the initial overlap 0.8 for small m and still get
overlaps near unity for large m, Figure 3b.

For N → ∞, the overlaps seem to obey a scaling law,
Ψ = f(m/P ) in Figure 4, with a smooth cross-over to
complete recovery, f(∞) = 1, for P � m � N , some-
what similar to randomly diluted infinite-range Hopfield
models [14].

Of course, with a large m the network is no longer scale
free, as shown in Figure 5: The simple power law ∝ 1/q3

for the number of sites with q neighbours each [6] persists
for 102 < q < 103, but a Gaussian peak is added for
large q. However, the additional bump concerns only a
relatively small number of sites, and is probably negligible
for any practical purposes.

For infinite range, m = N , the usual Hopfield
model [15] gives an overlap Ψ close to 1 for P/N < 0.14
and a relatively small overlap Ψ ∼ 0.2 for P/N > 0.14,
with a sharp jump at P/N = 0.14. Our simulations, in
contrast, show a gradual deterioration as soon as more
than one pattern is stored, but the value of Ψ is still of
order 0.2 and distinctly larger than for the other (P − 1)



D. Stauffer et al.: Efficient Hopfield pattern recognition on a scale-free neural network 399

patterns. Using a medium-sized fully connected core, like
m ∼ 103 at P ∼ 102, surrounded by a larger BA network
with N ∼ 104 sites, gives a good compromise between
good recovery and not too many connections.

So far it is not clear if the efficient recovery simply re-
sults from the relatively large average coordination num-
ber m, or by some additional ingredients in the problem.
It would also be interesting if Nature takes advantage of
a similar efficiency. If it does, do natural neural networks
share some geometrical features with the large-m (but fi-
nite) scale-free networks [6]?

We thank D. Horn, D. ben-Avraham and H. Sompolinsky for
discussions and the German-Israeli Foundation for supporting
our collaboration.

Note added in proof

For further simulation, including asymmetric couplings,
see our preprint cond-mat/0302040 submitted to Phys-
ica A.
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